A Basis of the q-Schur Module

نویسندگان

  • Xingyu Dai
  • Fang Li
  • Kefeng Liu
چکیده

In this paper, we construct the q-Schur modules as left principle ideals of the cyclotomic q-Schur algebras, and prove that they are isomorphic to those cell modules defined in [3] and [10] at any level r. Then we prove that these q-Schur modules are free modules and construct their bases. This result gives us new versions of several results about the standard basis and the branching theorem. With the help of such realizations and the new bases, we re-prove the Branch rule of Weyl modules which was first discovered and proved by Wada in [20].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZARISKI-LIKE SPACES OF CERTAIN MODULES

Let $R$ be a commutative ring with identity and $M$ be a unitary$R$-module. The primary-like spectrum $Spec_L(M)$ is thecollection of all primary-like submodules $Q$ such that $M/Q$ is aprimeful $R$-module. Here, $M$ is defined to be RSP if $rad(Q)$ isa prime submodule for all $Qin Spec_L(M)$. This class containsthe family of multiplication modules properly. The purpose of thispaper is to intro...

متن کامل

Quantized mixed tensor space and Schur–Weyl duality II

In this paper, we show the second part of Schur-Weyl duality for mixed tensor space. The quantum group U = U(gln) of the general linear group and a q-deformation Br,s(q) of the walled Brauer algebra act on V ⊗r ⊗V ∗⊗s where V = R is the natural U-module. We show that EndBnr,s(q)(V ⊗r ⊗ V ∗) is the image of the representation of U, which we call the rational q-Schur algebra. As a byproduct, we o...

متن کامل

A Quantum Version of the Désarménien Matrix

We use elements in the quantum hyperalgebra to define a quantum version of the Désarménien matrix. We prove that our matrix is upper triangular with ones on the diagonal and that, as in the classical case, it gives a quantum straightening algorithm for quantum bideterminants. We use our matrix to give a new proof of the standard basis theorem for the q-Weyl module. As well, we show that the sta...

متن کامل

THE AFFINE q - SCHUR ALGEBRAR

We introduce an analogue of the q-Schur algebra associated to Coxeter systems of type b A n?1. We give two constructions of this algebra. The rst construction realizes the algebra as a certain endomorphism algebra arising from an aane Hecke algebra of type b A r?1 , where n r. This generalizes the original q-Schur algebra as deened by Dipper and James, and the new algebra contains the ordinary ...

متن کامل

v 2 1 3 O ct 1 99 8 THE AFFINE q - SCHUR ALGEBRA

We introduce an analogue of the q-Schur algebra associated to Coxeter systems of type A n−1. We give two constructions of this algebra. The first construction realizes the algebra as a certain endomorphism algebra arising from an affine Hecke algebra of type A r−1 , where n ≥ r. This generalizes the original q-Schur algebra as defined by Dipper and James, and the new algebra contains the ordina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013